Вопрос пользователя:
Ответ нейросети:
To solve this inequality, we first need to rewrite it in a more simplified form.
Given: log 8/3 * log 1/2 (𝑥^2−𝑥−6) ≥ 0
We can simplify this inequality by using the properties of logarithms.
First, we can rewrite log 8/3 as log(8) - log(3) and log 1/2 as -log(2).
So, the inequality becomes:
(log(8) - log(3)) * (-log(2)) * (𝑥^2−𝑥−6) ≥ 0
Now, we can simplify further by combining the logarithms:
-log(8) + log(3) * log(2) * (𝑥^2−𝑥−6) ≥ 0
Now, we need to solve for 𝑥.
To do this, we need to consider the properties of logarithms.
For a logarithm to be greater than or equal to 0, the argument inside the logarithm must be greater than 1.
So, we need to solve the inequality:
𝑥^2−𝑥−6 > 1
𝑥^2−𝑥−7 > 0
Now, we need to factor the quadratic equation:
(𝑥-3)(𝑥+2) > 0
Now, we need to find the critical points by setting the equation equal to 0:
𝑥-3 = 0 𝑥 = 3
𝑥+2 = 0 𝑥 = -2
Now, we can test the intervals between the critical points to determine when the inequality is true:
For 𝑥 < -2: (𝑥-3) and (𝑥+2) are both negative, so the inequality is false.
For -2 < 𝑥 < 3: (𝑥-3) is negative and (𝑥+2) is positive, so the inequality is true.
For 𝑥 > 3: (𝑥-3) and (𝑥+2) are both positive, so the inequality is true.
Therefore, the solution to the inequality is 𝑥 < -2 or 𝑥 > 3.
Напишите нам, если в вопросе есть ваши персональные данные ([email protected])
Обратите внимание: ответы, предоставляемые искусственным интеллектом, могут не всегда быть точными. Не рассчитывайте на них в критически важных областях, таких как медицина, юриспруденция, финансы или в вопросах, связанных с безопасностью. Для важных решений всегда обращайтесь к квалифицированным специалистам. Администрация сайта не несет ответственности за контент, сгенерированный автоматически.