Вопрос пользователя:
Ответ нейросети:
Для начала найдем производную функции y(x) = x^2 - 4x + 3:
y'(x) = 2x - 4.
Теперь найдем производную функции y^3 * sin(3x):
(y^3 * sin(3x))' = (y^3)' * sin(3x) + y^3 * (sin(3x))'.
(y^3)' = 3y^2 * y' = 3y^2 * (2x - 4) = 6y^2x - 12y^2.
(sin(3x))' = 3 * cos(3x).
Теперь подставим все значения:
(y^3 * sin(3x))' = (6y^2x - 12y^2) * sin(3x) + y^3 * 3 * cos(3x).
Далее подставим значение y = x^2 - 4x + 3 в полученное уравнение и упростим:
(y^3 * sin(3x))' = (6(x^2 - 4x + 3)^2 * x - 12(x^2 - 4x + 3)^2) * sin(3x) + (x^2 - 4x + 3)^3 * 3 * cos(3x).
Это и будет искомая производная функции y^3 * sin(3x).
Напишите нам, если в вопросе есть ваши персональные данные ([email protected])
Обратите внимание: ответы, предоставляемые искусственным интеллектом, могут не всегда быть точными. Не рассчитывайте на них в критически важных областях, таких как медицина, юриспруденция, финансы или в вопросах, связанных с безопасностью. Для важных решений всегда обращайтесь к квалифицированным специалистам. Администрация сайта не несет ответственности за контент, сгенерированный автоматически.